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RESUMO

O presente estudo analisa uma das aplicages do Método dos Elementos
finitos (MEF) dentro da mecanica dos solidos, sendo que o objetivo & criar um
programa que realiza anlise tridimensional de problemas dinamicos da interagcéo
solo-estrutura, como por exemplo, a interagéo de um riser com o solo, no dominio da
frequéncia. O Método dos Elementos Finitos (MEF) & usado para aproximar a
solucdo de equagdes diferenciais, seu principio consiste em discretizar o sistema em
pequenos subdominios (elementos finitos), identificando os graus de liberdade e
relacionando cada n6 da maneira adequada. As técnicas existentes para simular a
interagdo do solo em um meio tridimensional exigem um grande processamento de
dados, sendo, portanto esperado que seja utilizado um modelo numérico
computacional como a melhor solugdo para o problema. No presente estudo foi
escolhido o programa MATLAB®, ja que é um software atende aos requisitos de alto
processamento de simulagdes numéricas de forma eficiente. Os resultados
analiticos obtidos para a estrutura sem o solo indicam uma boa confiabilidade do
programa, que quanto maior o refinamento da malha, mais préximo o resultado
numeérico chega do analitico. Em relagéo ao acoplamento do solo, € percebido um

amortecimento dos deslocamentos, além da redugéo do valor da frequéncia natural.

Palavras Chave: Elementos Finitos. Solo. Amortecimento. Tridimensional.
Analise Dindmica.




ABSTRACT

The present study analyzes one of the applications of the Finite Element
Method (FEM) in Solid Mechanics. The objective is to create a program that performs
three-dimensional analyzes of dynamic problems of soil-structure interaction, such as
the interaction of a riser with the ground, in the frequency domain. The Finite Element
Method (FEM) is used to approximate the solution of differential equations and its
principle is to discretize the system in small subdomains (finite elements), identifying
the degrees of freedom and relating each node in the proper way. The existing
techniques to simulate soil interaction in a three-dimensional environment require a
large data processing, so it is expected that a computational numerical model will be
used as the best solution to the problem. In the present study the MATLAB® program
was chosen, since it is a software that meets the requirements of high numerical
simulations efficiently. The analytical results obtained for the structure without soil
indicate a good reliability of the program, that the greater the refinement of the mesh,
the closer the numerical result comes from the analytic. In relation to the coupling of
the soil, it is perceived a damping of the displacements, besides the reduction of the
value of the natural frequency.

Keywords: Finite Elements. Soil. Damping. Three-dimensional. Dynamic

analysis.
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1 INTRODUGAO

Projetos ou problemas de engenharia sdo mais bem sucedidos na sua
execugdo quanto mais se tem o entendimento do comportamento fisico dos
materiais e estruturas que os compdem. Segundo Kim (2011) para facilitar este
entendimento, sdo criados modelos matematicos aproximados que resuitam em
diversos tipos de equacdes, as quais, por sua vez, raramente podem ser
solucionadas de uma forma fechada, isto é, exata. A fim de resolvé-las de maneira
aproximada, sdo utilizados métodos numéricos entre os quais se destaca o Método
dos Elementos Finitos (MEF), amplamente estudado e com excelentes resultados.

No ambito da Mecanica dos Sélidos, este método é usado para aproximar a
solucdo de equagdes diferenciais & seu principio consiste em discretizar o sistema
em pequenos subdominios (elementos finitos), identificando os graus de liberdade
de cada né. Assim, é possivel formular as equagfes que descrevem o
comportamento de todos os nés de cada elemento finito e definir o sistema de
equagdes locais. Vaz (2011) indica que posteriormente, podem-se compor 0s
sistema de equacdes globais e resolvé-lo, obtendo os valores das incognitas
associadas aos graus de liberdade desconhecidos. Como o método utiliza solugGes
aproximadas, em geral, & medida que se diminui o tamanho de cada elemento finito
(aumentando assim a quantidade desses elementos no sistema), mais precisa se
torna a solucéo, convergindo para a solugéo exata.

Segundo Carrion (2012), existem trés abordagens para se obter as equacdes
de elementos finitos de um sistema: método direto, método variacional e método dos
residuos ponderados. Cada um deles possui suas vantagens e limitagGes. Neste
trabalho sera utilizada a abordagem do método dos residuos ponderados, que
consiste em aproximar as solugbes das equagdes gerando um erro (ou residuo)
inerente a formulagdo. Entdo, este residuo deve ser ponderado atraves de uma
fungdo (ponderadora), a qual pode ser de vérias formas. Aqui sera utilizada a forma
de Galerkin.

De acordo com Rao (2008), sempre que a frequéncia natural de vibragéo de
uma maquina ou estrutura coincidir com a frequéncia da excitagdo externa, ocorre
um fendmeno chamado ressonancia. Temos diversos exemplos de danos a

estruturas causados por ressonancia e vibragéo excessiva na literatura. Devido aos
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prejuizos causados por essas falhas é extremamente importante conhecer a
estrutura, e entender como amortecer a frequéncia natural de vibrag8io para evitar o

colapso.

Segundo Chakrabarti (1987), uma estrutura offshore pode ser considerada
livre para se mover em ondas. Tal estrutura deve ser conectada ao solo por algum
meio mecanico, e geralmente os graus de liberdade séo restringidos dados os tipos
de conexdo com o solo. O termo axial X pode ser considerado a sobre-tensédo, os
termos transversais Y e Z podem ser o hasteamento, oscilagbes e balangos
provenientes das ondas. Exemplos de estruturas que requerem ftal analise de
movimento sio: torres articuladas, petroleiros ancorados, semisubmersiveis, risers
entre outros. Para calcularmos a distribuicdo de tensbes devemos conhecer os
deslocamentos da estrutura, isso requer calculos de deslocamentos a partir de
equagdes ndo lineares que necessitam de técnicas como por exemplo, o Método
dos Elementos Finitos, para que uma solugéo seja obtida.

O presente estudo se insere em um contexto onde autores criaram modelos
numéricos sobre a interagdo solo/estrutura apenas em duas dimensGes, outras
pesquisas avaliaram as estruturas em trés dimensGes porem sem contar com a
interacdo do solo/estrutura. Este trabalho visa conciliar a analise estrutural tri-
dimensional com a interagdo do solofestrutura através de um cédigo computacional.




2 OBJETIVO

O objetivo deste estudo foi avaliar a anlise dindmica da interagéo solo -
estrutura aplicada a problemas tridimensionais e comprovando o amortecimento a
partir do solo, através de um cédigo MATLAB®. Realizando a implementacéo
numérica da estrutura por meio do método dos elementos finitos, particularmente o
elemento tetraédrico de quatro nés e o acoplamento do solo na estrutura.
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3 REVISAO BIBLIOGRAFICA

O método dos elementos finitos € um método de aproximagédo que pode ser
usado para calcular tensdes, movimentos de cargas e forgcas, deslocamentos,
transferéncia de calor e outros comportamentos fisicos basicos ao usar diagramas
de matriz e malha muito grandes. Nos tiltimos anos, o método dos elementos finitos
tem sido usado para obter as solugbes para uma variedade de problemas de
engenharia. Algumas aplicagbes de modelagem de elementos finitos que foram
utilizadas para pesquisa de engenharia séo posteriormente apresentadas.

Li et al. (2001) apresentaram um elemento finito quadratico com graus de
liberdade generalizados (GDOF), censiderando o principio de que os campos de
deslocamento local dos elementos sdo compativeis com o campo de deslocamento
global dos sistemas correspondentes, essa abordagem dos deslocamentos é

particularmente interessante, e sera utilizada no presente estude.

Neste trabalho, foi desenvolvido um campo de deslocamento global com base
em funcbes quadraticas de deslocamento local para os elementos. Portanto,
formando modelos para elementos finitos correspondentes ac GDOF reorganizando
os campos de deslocamento local de elementos para serem compativeis com os
campos de deslocamento global correspondentes. Em seu estudo, foram fornecidos
varios exemplos numéricos para autenticidade, simplicidade e versatilidade do
elemento e da viga na anélise de estruturas de paredes finas.

No presente estudo, iremos validar o modelo criado aplicando em um
exemplo de barra um carregamento axial e transversal em sua extremidade livre. Li
et al (2001) também determinaram que o elemento finito com GDOF podem lidar
com inconvenientes na andlise de vigas, placas e outras estruturas quando a
espessura muda. Além de lidar com esses problemas, os autores também
determinaram que o MEF deu um resultado semelhante com menos graus de
liberdade em relagdo as solugdes tradicionais de elementos finitos.

Kiral et al. (2008) apresentaram uma viga laminada simétrica fixa que foi
submetida a uma forga concentrada aplicada a uma velocidade constante para
determinar o comportamento dinamico dessa estrutura. Os autores usaram a teoria
classica da laminagdo para criar um modelo de elementos finitos tridimensional.
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Além disso, o0 método de integragdo do Newmark para calcular o comportamente
dinamico foi implementado no MATLAB®, que também ¢é escolha desse trabalho. A
ampliagdo dinamica é definida como a relagdo entre os deslocamentos dindmico e
estatico e é obtida para diferentes velocidades de carga e orientagdes das camadas.
Os resultados relatados neste artigo mostram que a velocidade da carga e a

orientagdo da camada tém um efeito significativo na resposta dinamica.

Bozdogan et al. (2009) demonstraram um método aproximado baseado na
metodologia de abordagem continua e transferéncia de matriz para andlises
estiticas e dinamicas de paredes de cisalhamento acecpladas a multiplos
compartimentos. Qs autores assumiram o sistema de vigas como umas estruturas
de materiais compdsitos, assim, escreveram a equagéo diferencial cuja solugéo deu
as fungdes de forma para cada instante de tempo. Ao usar condigSes de contorno
que sdo obtidas por essas fungdes de forma, os modos de sistema e os periodos
podem ser calculados. Um programa de computador foi desenvolvido em MATLAB®
e amostras numéricas foram resolvidas para demonstrar a confiabilidade desse
método. Os resultados foram comparados com dados existentes na literatura
obtendo boa correlagédo. Os autores sugeriram que seu método € apropriado para
usar em uma ampla gama de aplicagdes de sistemas estruturais.
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4 MATERIAIS E METODOS

Para realizar as atividades do projeto, foi necessario um estudo da analise
dinamica, sem e com amortecimento no dominio da frequéncia, alem da
estruturacdo do elemento tetraédrico. Para a estrutura foram desenvolvidas as
matrizes de rigidez e massa assim como a organizagéo dos dados de entrada. Por
fim foi realizado o acoplamento do solo. Tais processos serdo mais detathados a

seguir.

41 ANALISE DINAMICA

Segundo Rao (2008) para realizarmos a dedugfio das equagbes de
movimento de um sistema com varios graus de liberdade utilizando a segunda lei de
Newton devemos seguir os seguintes procedimentos: determinagéo das
cooordenadas, configuragdo do sistema em equilibrio, desenhar um diagrama de
corpo livre e por fim aplicar a segunda lei de Newton.

O primeiro passo, determinar as coordenadas adequadas para descrever as
posigbes das varias massas pontuais e corpos rigidos no sistema, considera as
direcGes positivas adequadas para os deslocamentos, velocidades e aceleragao das
massas e corpos rigidos.

O segundo passo, determinar a configuragdo do sistema em equilibrio
estatico e medir os deslocamentos das massas e corpos rigidos em relagéo as suas
respectivas posigdes em equilibrio estatico.

O terceiro passo, desenhar o diagrama de corpo livre de cada massa ou
corpo rigido no sistema, de maneira a indicar a mola, o amortecimento e as forcas
externas que agem sobre cada massa ou corpo rigido quando s&o inseridos
deslocamento e velocidade positivos a massa ou corpo rigido.

E por fim, a segunda lei do Movimento de Newton deve ser aplicada a cada
massa ou corpo rigido mostrado pelo diagrama de corpo livre como na Eq. 1:

m;¥; = X.; Fjj (para a massa m;) (1)

Deduzindo as equacdes de movimenta do sistema massa-mola amortecedar,
conforme a Figura 1 e o diagrama de corpo livre de massa m;, conforme a Figura 2,

temos a seguinte situagéio mostrada na Eq. 2
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myiy = —k;(; — xi-1) + Kiea (6 = %—1) — ;G — %i-1) + Cipa O = Xim) +
FiiaRed a1 @)

Figura 1- Sistema massa-mola amortecedor
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Figura 2 - Diagrama de corpo livre de massa Mm;
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(Fonte: Rao, 2008)

As equacbes de movimento das massas m; € m, podem ser deduzidas da
Eq. 2, fazendo i =1 juntamente com x, =0 e i=n juntamente com x,,; =0,
respectivamente gerando a Eq. 3.

myxy — &y (ki + kz) = kaxy + %1(c; + ) — ¥z =F  (3)
As Eq. 2 e Eq. 3 podem ser expressas na forma matricial como mostrada na
Eq. 4:
M)E+[CIE+[KIE=F (4)
Em que [M], [C] e [K] sdo as denominadas matrizes de massa,

IS

amortecimento e rigidez, respectivamente, e ¥, ¥, ¥ e F s@o os vetores de
deslocamento, velocidade, aceleragdo e carregamento externo, respectivamente,

dados por:
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m1 O ses 0

[M]= 0 :mZ 0

0 0 m,
(C1+C2) _Cz 0 b O
—c; (cztcz) —cg = O
[€1=] 0 —c3 (catcy) - O
0 o 0 - (cptcnsa)
i (k1+k2) _kZ O F O
ey (kpths) ks O
[Kl=} 0 —kg (kztky) - O
0 0 0 o (kytkpsy)

x,(t) X1 (t) X, (t) F(®)
Pl xz‘(t) A= J'Cz.(t) 2o 552.@) F= Fz.(t)
X (6) n(0) S (8) F(8)

O sistema massa-mola-amortecedor considerado anteriormente € um caso
particular de um sistema geral massa-mola-amortecedor com n graus de liberdade.

Em sua forma mais geral, as matrizes de massa, amortecimento e rigidez s&o dadas

por:

my; Mqp 7 Myn C11 C1p 7 Cin
Mmyy Mz - Mpp = C21 €22+ Con

My1 Myy <= Mpy Ch1 Cn2 " Cnn

(M] =
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kin kiz kin
g [P e e
kni knz " kpm

Com my; = my;, G = GCsi e kij = kll

4.2 ANI'\LISAE DE UM SISTEMA SEM AMORTECIMENTO NO DOMINIO DA
FREQUENCIA

No dominio do tempo, a equagdo do movimento de um sistema sem
amortecimento escrito na forma matricial € dado a seguir pela Eq. 5:

[MIZ(@) + [KIZ@®) =F(©)  (5)
Propondo-se uma solugdo mostrada na Eq. 6:
#(t) = + cos(wt) = Re[xe'®t] (6)

Temos, as Eq. 7,8, 9

2(t) = Re[iwge'@t] (7)

i(t) = Re[-w?ze™t]  (8)
F(t) = Re[Fzet]  (9)
Em que i = V-1, w é a frequéncia de excitagdo da estrutura, x € o vetor com

as amplitudes dos deslocamentos e F é o vetor formado pelas amplitudes dos

esforcos externos.

Substituindo as Eq. 7, 8 e 9 na Eq. 4 e fazendo os devidos ajustes, chega-

se na Eq. 10:
{[K] - w?[M]}.x =F (10)

Como a Eq. 10 é um sistema linear pode-se realizar a analise Fungéo de
Resposta em Frequéncia (FRF) da estrutura, onde cada frequéncia w obtem um
novo vetor deslocamento . Analisando, portanto, como o do deslocamento varia em
funcdo da frequéncia e gerar uma analise grafica. A andlise verificara assim quais 0s
valores de w que ocorrem picos de deslocamentos, identificando, portanto a

frequéncia natural da estrutura.
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4.3 ANALISE DE UM SISTEMA COM AMORTECIMENTO NO DOMINIO DA
FREQUENCIA

Em muitos casos, a influéncia do amortecimento sobre a resposta de um
sistema vibratério é insignificante e pode ser desprezada. Todavia, o efeito do
amortecimento deve ser considerado se a resposta do sistema for exigida durante
um periodo relativamente grande e também se a frequéncia de excitagéo for a
mesma ou estiver préxima das frequéncias naturais do sistema.

Segundo Rao (2008), por simplicidade, sera considerado um sistema
especial para o qual a matriz de amortecimento pode ser expressa pela Eq. 11 como
uma combinagao linear das matrizes de massa e rigidez.

[C] = a[M] + B[K] (11)

Em que « e # sdo constantes. Esse tipo de amortecimento € conhecido como
amortecimento proporcional porque [C] é proporcional & combinagdo linear de [M]
com [K].

Substituindo as Eq. 11, 7, 8 e 9 na Eq. 5 e fazendo os devidos ajustes
chega-se na Eq. 12.

{IK] — w*M] + w(a[M] + BIKD}.E=F (12)

Em que {[K]- w?[M]+ w(a[M]+ B[K])i} € a Matriz de Impedancia do

sistema, S(w).

Merece destaque, também, o fato de que todas as variaveis utilizadas
nesta etapa do trabalho devem ser complexas. Fisicamente, isso pode ser explicado
pelo fato de o amortecedor ser um dissipador de energia e ndo um elemento
conservativo (como os elementos de mola).

4.4 ELEMENTO TETRAEDRICO LINEAR

Uma estrutura modelada de maneira continua é resolvida com equagbes
diferenciais parciais, dificeis de serem resolvidas e muitas vezes sem solugéo
analitica. Para solucionar isto, usamos uma modelagem discreta, onde as equagtes
sdo equacdes diferenciais ordinarias, relativamente mais faceis de serem resolvidas.
Entretanto é esperado que a solugéo discretizada nao seja téo precisa quanto a uma
solugdo continua, em que deve-se pesar a finalidade da analise, a capacidade de

processamento e o tempo disponivel para o calculo
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Segundo Soriano (2009), o elemento tetraedro linear € o mais simples
elemento tridimensional usado na anadlise de problemas soélidos mecanicos. Este
elemento tem quatro nés, em que cada né tem trés graus de liberdade de translagdo
nas diregbes nodais x, y e z. Um elemento tetraedro linear tipico € mostrado na

Figura 3.

Figura 3 - Representagdo de um elemento tridimensional genérico (4 nés)

4.5 MATRIZ DE RIGIDEZ

De acordo com Bittencourt, (2010), a matriz de rigidez de um elemento pode
ser expressa pela Eq. 13.

[X.] = [, [BI"[D1[BldV (13)
Onde temos que:

[B] : Matriz de deformagao do elemento

[D] : Matriz de elasticidade

1-v v v 0 0 O

v 1-v v 0 0 O

_ E v v 1-v 0 0 O
Pl = 5a=znlo 0 0 @-2v/2 0 0
0 00 0 (1—-2v)/2 0
0 00 0 0 (1—2v)/2
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by 0 Q b, 0 0 b3 0 O b, 0 O
0 e \ 00 e 0 0 c 00 ic, 0
1 0 0di 00 d; 00 d;s 0O dy |
6Vollc, by 0 ¢ by, 0 ¢c3 b3 0 ¢4 by OFf
0 di ¢f 0 dy ¢ 0 ds 3 0 dy ¢
d, 0 by d 0 b, d3 QO by dy O byl

(B] =

Em que os coeficientes by, c; e d; séo dados por:

1y oz
bi=—|1 yr 2z|;
1 »n z
xj 1 ZI
C; = — X 1 Zrl
Xy 1 Zy
x,- y]' 1
di=—|x yx 1|5
x n 1

Analisando as matrizes [B] e [D] percebemos que dadas as coordenadas x,
y e z dos quatro n6s do elemento tetraédrico e dado o Médulo de Elasticidade £ e o
Coeficiente de Poisson v do material do elemento, tais matrizes sdo matrizes
constantes. Dessa maneira a integracdo da matriz de rigidez torna-se trivial,
permitindo reescrever a matriz de rigidez como mostrada na Eq. 14:

[K.]=[BY[DlB] Vol  (14)

4.6 MATRIZ DE MASSA

Para a construgdo da matriz de massa concentrada seguiremos 0 mesmo
raciocinio ja tomado e dividiremos a massa entre os quatro nés do elemento
tetraédrico linear chegando na seguinte expressao:
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M] pVol

i
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4.7 ORGANIZAGAO DOS DADOS DE ENTRADA

De acordo com Hughes (2000), para definirmos a matriz [K] global e o vetor F,
precisamos especificar e correlacionar os arranjos légicos entre os nés locais e os
nés globais ordenando-os em trés tipos de matrizes: ID, IEN, LN. A seguir sera
detalhado o funcionamento das matrizes, € no anexo, um exemplo tridimensional
sera apresentado para melhor entendimento do problema.

ID: E conhecida como a matriz de destino. Onde “i" € o grau de liberdade, “A”
o né global e P o niimero da equag&o global. Esta matriz relaciona os nés globais,
com os respectivas graus de liberdade, criando uma relagéo global no sistema. Sua
funcao é representada pela Eq. 15:

ID (i, A) = P. (15)

No caso de nosso problema tridimensional existem 4 nés para cada elemento,
assim como cada nd tem a liberdade de se locomover em 3 diregGes.

Caso néo possua condi¢do de contorno, a matriz sera preenchida do nimero

1 até o nimero de nés.

Caso possua condi¢édo de contorno, a matriz sera preenchida de forma nula

para o P.

IEN: Esta matriz relaciona cada elemento, com seus respectivos nés locais.
Onde “a” é o nd local do elemento e “e” € o nimero local do elemento. De forma que
cada um dos tetraedros representando cada elemento, possui 4 nés locais. Sua

fungéo é representada pela seguinte relagdo mostrada pela Eq. 16:
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IEN (a,e) = A. (16)
Esta matriz ndo € afetada pelas condi¢des de contorno.

“n
1

LM: Esta matriz é a jungdo das matrizes ID com IEN. Onde ‘I’ é o grau de

liberdade, “a” o nd local e “e” o nimero do elemento. Ela posiciona cada niumero do
elemento “e” num sistema global. Esta matriz € tridimensional, relacionando todos os
atributos inseridos nas matrizes anteriores. Sua fungéo é representada pela Eq. 17:

LM (i,a,e)=ID(i,IEN(a,e)) (17)

A partir desse arranjo € possivel construir a matriz de rigidez global K e
também o vetor carregamento global F utilizando os algoritmos representados

respectivamente pelas Equagdes 18 e 19:
K[LM(i,a,e), LM(i,a,e)] = KILM(i,a,e), LM(i,a,e)] + k* (18)
FILM(i,a,e), LM(i,a,e)] = F[LM(i,a,e), LM(i,a,e)] +*  (19)
Sendo: k®a matriz de rigidez do elemento “¢”
e f°o vetor carregamentos do elemento “e”
4.8 INCORPORACAO DO SOLO
Definigdo dos parametros do solo:

Para acoplar o solo na andlise da estrutura, deve-se considerar o primeiro
como uma associagdo de uma mola e um amortecedor. Desta forma o solo

acrescenta rigidez ao sistema. (Carrion, 2002) Como mostra a Figura 4:
Figura 4 -~ Representagdo mola-amortecedor do Solo
t
—
ks < mCs

(Fonte: Carrion, 2002)

O solo esta sujeito a uma forga de excitagdo F; gerada pela estrutura,

apresentando um deslocamento u.
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Podemos representar essa relagéo a partir da Eq. 20
meils + csiis + Koug = F; - (20)

Admitindo a fundagdo sem massa, no dominio da frequéncia, temos a Eq. 21:

Gai K, — w? rr(;f+wcs Aug} = {F} (21)

Ss(w)

Cada tipo de solo possui um modulo de cisalhamento G. O comprimento a &
uma caracteristica do projeto e depende do tamanho da base da estrutura colocada

em contato com o solo.

O solo possui uma rigidez e um amortecimento, assim como nas estruturas,
podendo ser representado por Sg(w) que representa a impedéncia do Solo. Esses
dados devem ser fornecidos.

Para representar o acoplamento do solo, utilizaremos a Figura 5 para
representar o acoplamento do solo com a estrutura.

Figura 5 — Modelo acoplamento do Solo com Estrutura

?kl

I.-T
-

Jz,,,’lﬁ

BT (. )P

e

(Fonte: Carrion, 2002)
A partir do sistema acima, chegamos as seguintes Eq. 22 e 23:
myily + 1y (ky + k2) — kaup + 11, (¢; + ¢2) — cot; = Fy (22)

mzﬁz + kzuz = k2u1 b Cz'l:l]_ + Czilz = Fz i I'-‘;- (23)
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Para que o acoplamento dinamico aconteca, devemos garantir que o
deslocamento do solo seja 0 mesmo que o da estrutura nos nés de acoplamento,

para isso a relagdo a seguir deve ser respeitada:
U = U, (24)
Dessa forma chegamos a seguinte relagdo de movimento:
A [ o v B R N [
21 2 Z 2 1tU2 =k, (k2 + GaSs(w)) 12 F,
A partir dessa equag&o do movimento, podemos concluir que o solo influencia

na rigidez da estrutura. O solo adiciona um termo de impedancia na rigidez

relacionada com o grau de liberdade da estrutura.

O acoplamento unidirecional serviu como base para o objetivo do estudo, o
acoplamento tridimensional. As respostas dinamicas na diregdo X, Y e Z devem
estar acopladas com o solo, como mostradas respectivamente nas Eq. 25, 26 e 27.

Ga{S, (@)} (e} = (5} (25)
Gafs, (). fuy} = {5} (26)
Gafs, (@)} (5} = (B} 27)

Assim como na visdo unidimensional os deslocamentos do solo devem ser os

mesmos das estruturas em cada grau de liberdade, mostrados nas Eq. 28,29 e 30.

111 - 'l:l.x (28)
i, = 11, (29)
i3 = 1, (30)

Dessa forma a matriz de rigidez deve ter a seguinte forma:

kyy + Ga{Sy(w)} k24 k31
k21 kzz + Ga{Sy((D)} k32
k31 k23 k33 + Ga{S,(w)}

Podemos verificar que o acoplamento do solo tridimensional também ocorre
com um acréscimo da impedancia do solo na rigidez do sistema, onde o
acoplamento do solo ocorre nos graus de liberdade x, y, z. Alterando diretamente na

estrutura.
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5 RESULTADOS E DISCUSSOES

A seguir sera efetuada a analise de uma estrutura em formato de barra,

composta por elementos tetraédricos, carregada harmonicamente.

Considere a estrutura da Figura 6, com a face engastada na origem (lado
A) carregada em sua extremidade (lado B) por trés forcas harmbdnicas cujas
amplitudes maximas s&o 200 KN, aplicadas nos eixos X, Y e Z.

Os dados de entrada referentes ao problema em questdo devem ser
fornecidos pelo usuario. Tais como: Numero de noés, coordenadas dos nos,
condigdes de contorno, forga de carregamento, nimero de elementos, incidancia,
modulo de Young e coeficiente de poisson.

Serao efetuadas analises com elementos tetraédricos lineares. A geragéo das
malhas é realizada com o auxilio do programa Ansys, com as malhas prontas,
podemos prosseguir com a analise no MATLAB®. A malha gerada pelo Ansys pode
ser vista na Figura 6

Figura 6 — Viga discretizada em elementos tetraédricos (lado A engastado, lado B livre)

A Tabela 1 indica os dados referentes ao problema:




24

Tabela 1 - Dados de enfrada

Propriedade Valor
L (m) 5
A (m?) 0,25
E(N/m?) 2,1.107
Iz(m*) 5,21.10°
p(Kg/m®) 7800
A 0,0001
B 0
u(Kg/m®) 0.2
G(MPa) 144

A forca de 200 KN foi distribuida igualmente entre os nds presentes da face
livre. Segundo Rao (2008) para o caso do carregamento axial, onde a estrutura se
comporta como um elemento de barra engastada tem a Eq. 31 que é a expressé&o da

frequéncia natural:
E
w = [ (31)

Em que n é a n-ésima frequéncia natural, E € o Médulo de Young, p é a

massa especifica e L é o comprimento total do elemento.

Para o caso do carregamento transversal na extremidade livre, nos eixos Y e
Z, as expressdes para as trés primeiras frequéncias naturais séo representadas

pelas Eq. 32, 33 e 34:

w, = 1,875% [Z= (32)

PAL*

W, = 4,6942 ;ii; (33)

w3 = 7,855 /;ﬁ’—; (34)

Em que “I,” ¢ o Momento de Inércia de Area.

Caleulando analiticamente os trés primeiros valores das frequéncias naturais
em cada um dos trés eixos, chega-se nos valores a seguir: w; = 163,0, w, = 489,0 e
w; = 815,0 Rad/s para o carregamento axial (eixo X), e w; = 10,5, w; =66,0 e

w3 = 184,8 Rad/ s bara os carregamentos transversais (eixos Y e Z).
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Para fazermaos a analise de convergéncia, vamos refinar em um maior numere
de nés. Para isto, o problema foi discretizado em trés malhas, com diferentes niveis
de refinamento, conforme mostra a Tabela 2:

Tabela 2- Caracteristica das Malhas

Malha Nuamerode nés Numero de Elementos

1 203 518
2 280 741
3 485 1529

Resolvendo pelo MEF a Eq.12 englobando os trés primeiros valores da
frequéncia natural, a partir da matriz de massa concentrada cbtém-se o grafico da
funcdo resposta em frequéncia (FRF), ilustradas a seguir. Nas figuras ja temos o
acoplamento com o solo, e vamos discutir mais a frente.

A seguir serdo mostradas nas figuras 7,8 e 9 os resultados provenientes do
carregamento externo das trés malhas pelo carregamento axial X, nas figuras
10,11,12 os resultados das trés malhas pelo carregamento transversal em Y, e nas
figuras 13,14,15 os resultados das trés malhas pelo carregamento transversal Z.
Podemos perceber que os sistemas apresentam picos que tendem ao infinito, sendo
esses os pontos da frequéncia natural do sistema. As figuras apresentam a grafico
da frequéncia de excitagéo pelo deslocamento, onde poderemos avaliar os pontos

de ressonancia.
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Figura 7 - Grafico da FRF de um grau de liberdade em X do n6 central da extremidade livre
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Figura 8 - Grafico da FRF de um grau de liberdade em X do né central da extremidade livre
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Figura 9 - Gréfico da FRF de um grau de liberdade em X do né central da extremidade livre
usando a Malha 3
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Figura 10 - Gréfico da FRF de um grau de liberdade em Y do né central da extremidade livre
usando a Malha 1
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Figura 11 - Gréafico da FRF de um grau de liberdade em Y do n6 central da extremidade livre
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Figura 12 - Grafico da FRF de um grau de liberdade em Y do né central da extremidade livre
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Figura 13 - Gréfico da FRF de um grau de liberdade em Z do né central da extremidade livre
usando a Malha 1
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Figura 14 - Gréfico da FRF de um grau de liberdade em Z do né central da extremidade livre
usando a Malha 2
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Figura 15 - Gréafico da FRF de um grau de liberdade em Z do né central da extremidade livre
usando a Malha 3
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As figuras 10,11,12 representando o grau de liberdade Y e 13,14,15
representando o grau de liberdade Z devem ser bastante semelhantes, entretanto é
percebida uma leve diferengca devido as coordenadas dos nés ndo serem
exatamente simétricas.

Comparando as trés primeiras frequéncias de ressonancia de cada FRF
acima calculadas numericamente, com os respectivos valores das frequéncias
naturais dessas estruturas calculadas analiticamente temos, para as diregbées X, Y e
Z os dados das Tabelas 3,4 e 5.

Tabela 3 - As trés primeiras frequéncias naturais em X do n6 central da face carregada obtidas
analitica e numericamente

LA Resultado Resultado Resultado
I;lraetﬂgzlnecrls RAenS;:,:iac%O Numérico Numérico Numérico
(Rad/;)  (Rad/)  (Rad/

A R2Ys)  Mahal Maha2 Maha3
w0l 163,0 1633 1633 1633
®2 4890 4887 4891 4891
3 8150 8100 8114 8123
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Tabela 4- As trés primeiras frequéncias naturais em Y do né central da face carregada obtidas
analitica e numericamente

Frequéncia Resulitado Resultado Resultado Resultado
Naturalem Analitico Numérico Numérico Numérico

Y (Rad/y  (Red/yy  (Rad/  (Rad/
Malha 1 Malha 2 Malha 3
wl 10,5 12,2 11,9 11,6
w?2 66,0 74,2 71,3 69,4
w3 184.,8 186,8 184,7 183,0

Tabela 5- As trés primeiras frequéncias naturais em Z do n6 central da face carregada obtidas
analitica e numericamente

Frequéncia Resultado Resultado Resultado Resultado
Naturalem Analitico Numérico Numérico Numérico

Y (Rad/y  (Red/y  (Rad/;)  (Rad/
Matha 1 Malha 2 Malha 3
w1 10,5 12,1 11,9 11,7
w2 66,0 73,7 71,3 69,6
w3 184,8 186,0 184,7 183,0

Pode-se notar que os resultados numéricos assemelham-se dos analiticos,
principalmente para frequéncias naturais mais baixas. Quanto maior o refinamento
da malha da estrutura, percebe-se que mais o resultado numérico fica préximo do
tedrico. As tabelas 6, 7 e 8 indicam as frequéncias naturais quando acopladas ao

solo.

Tabela 6 As primeiras frequéncias naturais com o solo em X do né central da face carregada
obtida numericamente

Frequéncia Resuliado Resultado Resultado Resultado
Naturalem Analitico Numérico Numérico Numérico

X (Rad/)  (Rad/y  (Rad/  (Rad/
Malha 1 Malha 2 Malha 3

wl - 44.6 42,8 40,5

w2 - 317,3 319,1 319,1

w3 - . . -
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Tabela 7 As primeiras frequéncias naturais com o solo em Y do né central da face carregada
obtida numericamente

Frequéncia Resultado Resultado Resultado Resultado
Naturalem Analitico Numérico Numérico Numérico

b (Red/)  (Rad/)  (Radf;)  (Radf)
Malha 1 Malha 2 Malha 3
wl : 10,1 10,9 11,0
w2 - - - -
w3 - . - -

Tabela 8 As primeiras frequéncias naturais com o solo em Z do né central da face carregada
obtida numericamente

Frequéncia Resultado Resultado Resultado Resultado
Naturalem Analitico Numérico Numérico Numérico

z (Rad/)  (Rad/y  (Rad/)  (Rad/
Malha 1 Matha 2 Maiha 3
wl - 11,0 10,9 11,0
w2 - - - -
w3 - - - -

O solo amortece a vibragdo, comprovados com os dados das tabelas 6,7 e 8,
fazendo com que a frequéncia natural diminua, e diminuindo a amplitude do
deslocamento, o objetivo é evitar trabalhar com uma estrutura excitada na frequéncia

igual a frequéncia natural quando esta acoplada com o solo.
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6 CONCLUSOES

O desenvolvimento do codigo em MATLAB® para analisar o acoplamento do
solo em estruturas tetraédricas tridimensionais, utilizando o método dos elementos
finitos, foi realizado. Foi possivel calcular as frequéncias naturais da estrutura
engastada a uma superficie fixa e sua comparagéio com o solo, uma superficie
elastica. O programa utiliza as teorias de vibragdes mecanicas para analisar o
comportamento dindmico da estrutura, calculando suas frequéncias naturais de
vibracdo e as fungdes de resposta em frequéncia de seus deslocamentos.

Analisando pelo ponto de vista classico, uma estrutura quando excitada no
dominio da frequéncia pode ter sua amplitude tendendo ao infinito caso a frequéncia
natural da estrutura seja igualada com a frequéncia de excitacdo. Para a validagédo
do modelo, foi realizada uma comparagdo em relagdo as frequéncias naturais de
uma estrutura engastada em uma extremidade e carregada dinamicamente na
superficie livre, com um modelo analitico, discretizando em trés malhas diferentes.
Como esperado, quanto maior a discretizagdo, mais préximo o modelo ficou do caso

analitico.

O grande objetivo foi conhecer o comportamento da estrutura quando
acoplada ao solo. Os resultados indicaram que o solo atua como um amortecedor
dinamico, atuando sobre a estrutura diminuindo sua amplitude de deslocamento e
reduzindo as frequéncias naturais.
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Resumo

O presente estudo analisa uma das aplicagdes do Método dos Elementos finitos (MEF) dentro da
mecanica dos solidos, sendo que o objetivo € criar um programa que realiza andlise tridimensional de
problemas dindmicos da interagio solo-estrutura, como por exemplo, a interagéo de um riser com o solo,
no dominio da frequéncia. O Método dos Elementos Finitos (MEF) € usado para aproximar a solugéo de
equagdes diferenciais, seu principio consiste em discretizar o sistema em pequenos subdominios
(elementos finitos), identificando os graus de liberdade e relacionando cada n6é da maneira adequada. As
técnicas existentes para simular a interagdo do solo em um meio tridimensional exigem um grande
processamento de dados, sendo, portanto esperado que seja utilizado um modelo numérico
computacional como a melhor solugéo para o problema. No presente estudo foi escolhido o programa
MATLAB®, ja que é um software atende aos requisitos de alto processamento de simulagdes numéricas
de forma eficiente. Os resultados analiticos obtidos para a estrutura sem o solo indicam uma boa
confiabilidade do programa, que quanto maior o refinamento da malha, mais préximo o resultado
numeérico chega do analitico. Em relagfo ao acoplamento do solo, é percebido um amortecimento dos
deslocamentos, além da reducdo do valor da frequéncia natural.

Palavras Chave: Elementos Finitos. Solo. Amortecimento. Tridimensional. Anélise Dindmica.

Abstract

The present study analyzes one of the applications of the Finite Element Method (FEM) in Solid
Mechanics. The objective is to create a program that performs three-dimensional analyzes of dynamic
problems of soil-structure interaction, such as the interaction of a riser with the ground, in the frequency
domain. The Finite Element Method (FEM) is used to approximate the solution of differential equations
and its principle is to discretize the system in small subdomains (finite elements), identifying the degrees
of freedom and relating each node in the proper way. The existing techniques to simulate soil interaction
in a three-dimensional environment require a large data processing, so it is expected that a
computational numerical model will be used as the best solution to the problem. In the present study the
MATLAB® program was chosen, since it is a software that meets the requirements of high numerical
simulations efficiently. The analytical results obtained for the structure without soil indicate a good
reliability of the program, that the greater the refinement of the mesh, the closer the numerical result
comes from the analytic. In relation to the coupling of the soil, it is perceived a damping of the
displacements, besides the reduction of the value of the natural frequency.

Keywords: Finite Elements. Soil. Damping. Three-dimensional. Dynamic Analysis.
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1. Introducgéao

Projetos ou problemas de engenharia sdo mais bem sucedidos na sua execugdo quanto mais se
tem o entendimento do comportamento fisico dos materiais e estruturas que os compdem. Segundo Kim
(2011) para facilitar este entendimento, sdo criados modelos matematicos aproximados que resultam em
diversos tipos de equagdes, as quais, por sua vez, raramente podem ser solucionadas de uma forma
fechada, isto é, exata. A fim de resolvé-las de maneira aproximada, sdo utilizados métodos numéricos
entre os quais se destaca o Método dos Elementos Finitos (MEF), amplamente estudado e com
excelentes resultados.

No ambito da Mecénica dos Solidos, este método € usado para aproximar a solugfio de equagSes
diferenciais e seu principio consiste em discretizar o sistema em pequenos subdominios (elementos
finitos), identificando os graus de liberdade de cada né. Assim, € possivel formular as equagSes que
descrevem o comportamento de todos os nds de cada elemento finito e definir o sistema de equagdes
locais. Vaz (2011) indica que posteriormente, podem-se compor os sistema de equagdes globais e
resolvé-lo, obtendo os valores das incognitas associadas aos graus de liberdade desconhecidos. Como o
método utiliza solugdes aproximadas, em geral, & medida que se diminui o tamanho de cada elemento
finito (aumentando assim a quantidade desses elementos no sistema), mais precisa se torna a solugdo,
convergindo para a solugéo exata.

Segundo Carrion (2012), existem trés abordagens para se obter as equagdes de elementos finitos
de um sistema: método direto, método variacional e método dos residuos ponderados. Cada um deles
possui suas vantagens e limitagdes. Neste trabalho serd utilizada a abordagem do método dos residuos
ponderados, que consiste em aproximar as solugdes das equagdes gerando um erro (ou residuo) inerente
a formulagdo. Entdo, este residuo deve ser ponderado através de uma fung¢fo (ponderadora), a qual pode
ser de varias formas. Aqui sera utilizada a forma de Galerkin.

De acordo com Rao (2008), sempre que a frequéncia natural de vibragdo de uma maquina ou
estrutura coincidir com a frequéncia da excitagio externa, ocorre um fendmeno chamado ressonancia.
Temos diversos exemplos de danos a estruturas causados por ressondncia e vibragdo excessiva na
literatura. Devido aos prejuizos causados por essas falhas € extremamente importante conhecer a
estrutura, e entender como amortecer a frequéncia natural de vibraggio para evitar o colapso.

Segundo Chakrabarti (1987), Uma estrutura offshore pode ser considerada livre para se mover
em ondas. Tal estrutura deve ser conectada ao solo por algum meio mecénico, e geralmente os graus de
liberdade sdo restringidos dados os tipos de conex3o com o solo. O termo transversal X pode ser
considerado a sobre-tensdio, os termos transversais Y e Z podem ser o hasteamento, oscilagdes €
balangos provenientes das ondas. Exemplos de estruturas que requerem tal analise de movimento s&o:
torres articuladas, petroleiros ancorados, semisubmersiveis, risers entre outros. Para calcularmos a
distribuicio de tensdes devemos conhecer os deslocamentos da estrutura, isso requer cilculos de
deslocamentos a partir de equagdes ndo lineares que necessitam de técnicas como, por exemplo, o
Método dos Elementos Finitos, para que uma solucéo seja obtida.

O presente estudo se insere em um contexto onde autores criaram modelos cientificos sobre a
interagdo solo/estrutura apenas em duas dimensdes, outras pesquisas avaliaram as estruturas em trés
dimensdes porem sem contar com a interagdo do solo/estrutura. Este trabalho visa conciliar a anélise
estrutural tri-dimensional com a interagfio do solo/estrutura através de um c6digo computacional.

O objetivo deste estudo foi avaliar a analise dindmica da interagfo solo — estrutura aplicada a
problemas tridimensionais e comprovando o amortecimento a partir do solo, através de um codigo
MATLAB®. Realizando a implementagio numérica da estrutura por meio do método dos elementos
finitos, particularmente o elemento tetraédrico de quatro nds e o acoplamento do solo na estrutura.
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2. Metodologia

Para realizar as atividades do projeto, foi necessario um estudo da andlise dindmica, sem € com
amortecimento no dominio da frequéncia, além da estruturagio do elemento tetraédrico. Para a estrutura
foram desenvolvidas as matrizes de rigidez e massa assim como a organizagio dos dados de entrada. Por
fim foi realizado o acoplamento do solo. Tais processos serfio mais detalhados a seguir.

2.1 ANALISE DINAMICA

Segundo Rao (2008) para realizarmos a dedugfo das equagdes de movimento de um sistema com
varios graus de liberdade utilizando a segunda lei de Newton devemos seguir os seguintes
procedimentos: determinac¢do das cooordenadas, configuragdo do sistema em equilibrio, desenhar um
diagrama de corpo livre e por fim aplicar a segunda lei de Newton. E assim chegamos na equagdo do
movimento, que pode ser expressa de maneira matricial segundo a Eq.1

MIX+[ClE+[KI1Z=F (1)

Em que [M], [C] e [K] sdo as denominadas matrizes de massa, amortecimento ¢ rigidez,
respectivamente, e X, X, X e F sdo os vetores de deslocamento, velocidade, acelera¢fo e carregamento
externo.

2.2 ANALISE DE UM SISTEMA SEM AMORTECIMENTO NO DOMINIO DA FREQUENCIA

No dominio do tempo, a equagdio do movimento de um sistema sem amortecimento escrito na
forma matricial ¢ dado a seguir pela Eq. 2:
[MIZ() + [KIZ@®) = F(®) ()
Propondo-se uma solugdo mostrada na Eq. 3:
2(t) = cos(wt) = Re[xe™!] (3)
Fazendo os devidos ajustes, chega-se na Eq. 4:
{[K]-w?[M]}.x=F 4
Como a Eq. 4 € um sistema linear pode-se realizar a andlise Fung¢@io de Resposta em Frequéncia
(FRF) da estrutura, onde cada frequéncia w obtém um novo vetor deslocamento X.

2.3ANALISE DE UM SISTEMA COM AMORTECIMENTO NO DOMINIO DA FREQUENCIA

Segundo Rao (2008), por simplicidade, serd considerado um sistema especial para o qual a
matriz de amortecimento pode ser expressa pela Eq. 5 como uma combinagfo linear das matrizes de
massa e rigidez:

[C] = a[M] + BIK] (5)

Em que a e B sdo constantes. Esse tipo de amortecimento ¢ conhecido como amortecimento
proporcional porque [C] é proporcional & combinaggo linear de [M] com [K].

Substituindo a Eq 5. na Eq 4. e fazendo os devidos ajustes chega-se na Eq. 6

{[K] - w2[M] + w(a[M] + BIKDi}. X =F  (6)
Em que {[K] — w?[M] + w(a[M] + B[K])i} ¢ a Matriz de Impedancia do sistema, S(w).

2.4INCORPORAGAO DO SOLO

Para acoplar o solo na analise da estrutura, deve-se considerar o primeiro como uma associagio
de uma mola e um amortecedor. Desta forma o solo acrescenta rigidez ao sistema. (Carrion, 2002). O

solo esta sujeito a uma forga de excitagdo F5 gerada pela estrutura, apresentando um deslocamento U,
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Podemos representar essa relagdo a partir da Eq. 7
metls + s + Ksug = F, - (7)
Admitindo a funda¢do sem massa, no dominio da frequéncia, temos a Eq. 8:

0
Ga{K; —w?m; +wesip.{us} = {F} (8)
Ss(w)

Cada tipo de solo possui um médulo de cisalhamento G. O comprimento a € uma caracteristica
do projeto e depende do tamanho da base da estrutura colocada em contato com o solo.

O solo possui uma rigidez e um amortecimento, assim como nas estruturas, podendo ser
representado por Sg(w) que representa a impedancia do Solo. Esses dados devem ser fornecidos.

Para representar o acoplamento do solo, utilizaremos a Figura 1 para representar o acoplamento
do solo com a estrutura.

Figura 1 — Modelo acoplamento do Solo com Estrutura

—LF. m. Iu
MT T s ) 7

(Fonte: Carrion, 2002)
A partir do sistema acima, chegamos as seguintes Eq. 9 e 10:
myiiy + Uy (k; + k) — kaup + 03(c; + ¢2) — cott, = F1 (9)
mzﬁz + kzuz . kzul e szll + Czilz = Fz - F; (10)
Para que o acoplamento dindmico acontega, devemos garantir que o deslocamento do solo seja o
mesmo que o da estrutura nos nds de acoplamento, para isso a relagdo a seguir deve ser respeitada:

s = U, (11)
Dessa forma chegamos a seguinte relagdo de movimento:
m; 0 {ﬁ1}+ (c1+c) -Cz] {111}_'_ (ky+k2) —k, {ul}z{F1}
0 my)li, =zt [Wp) L=k, (kz + GaS;(w)) [\W2) P

A partir dessa equagdo do movimento, podemos concluir que o solo influencia na rigidez da
estrutura. O solo adiciona um termo de impedéncia na rigidez relacionada com o grau de liberdade da
estrutura.

O acoplamento unidirecional serviu como base para o objetivo do estudo, o acoplamento
tridimensional. Sendo assim a matriz de rigidez deve ter a seguinte forma:

ky1 + Ga{S, (W)} kyy k3q
kyq ka2 + Ga{S,(w)} ko
k31 k23 k33 + Ga{S,(w)}

Podemos verificar que o acoplamento do solo tridimensional também ocorre com um acréscimo
da impedancia do solo na rigidez do sistema, onde o acoplamento do solo ocorre nos graus de liberdade
X, Y, z. Alterando diretamente na estrutura.
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3. Resultados

A seguir sera efetuada a andlise de uma estrutura em formato de barra, composta por
elementos tetraédricos, carregada harmonicamente. Considere a estrutura da Figura 2, gerada pelo
Ansys, com a face engastada na origem (lado A) carregada em sua extremidade (lado B) por uma for¢a
harménica cuja amplitude méaxima € 200 KN, aplicada no eixo X.

Figura 2 — Viga discretizada em elementos tetraédricos (lado A engastado, lado B livre)

Segundo Rao (2008) para o caso do carregamento axial, onde a estrutura se comporta como um
elemento de barra engastada tem a Eq. 12 que € a expressdo da frequéncia natural:

2n-1 ,E
Wy = nz LN e (12)

Em que n ¢ a n-ésima frequéncia natural, E ¢ o Médulo de Young, p € a massa especificae L €
o comprimento total do elemento.
Para fazermos a analise de convergéncia, vamos refinar em um maior nimero de nds. Para isto, o
problema foi discretizado em trés malhas, conforme mostra a Tabela 1:

Tabela 1- Caracteristica das Malhas

Malha  Numero de nés Numero de Elementos
1 203 518
2 280 741
3 485 1529

Comparando as trés primeiras frequéncias de ressonincia de cada FRF acima calculadas
numericamente, com os respectivos valores das frequéncias naturais dessas estruturas calculadas
analiticamente temos, para a direcdo X os dados da Tabela 2.

Tabela 2 - As trés primeiras frequéncias naturais em X do né central da face carregada obtidas
analitica e numericamente

énci Resultado Resultado  Resultado  Resultado
IEII:t?llrl:{l:z Analitico Numérico Numérico  Numérico
(R ad /S) (R ad /S) (R ad /S)

Rad
N (Re¢/s) Malha 1 Malha 2 Malha 3
Wi 163,0 163,3 163,3 163,3
w2 489,0 488,7 489,1 489,1

w3 815,0 810,0 811,4 812,3
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A tabela 3 indica o valor da frequéncia natural quando a estrutura é acoplada ao solo.

Tabela 3 As primeiras frequéncias naturais com o solo em X do né central da face carregada
obtida numericamente

Frequéncia Resultado Resultado Resultado Resultado
Naturalem  Analitico Numérico Numérico Numérico

X (Radfy  (Rad/y  (Rad/  (Rad/
Malha 1 Malha 2 Malha 3
W1 - 44,6 42,8 40,5
w2 - 317,3 319,1 319,1
W3 . i 2 x

A seguir serd mostrada na figura 3 os resultados provenientes do carregamento externo da malha
1 pelo carregamento axial

Figura 3 - Grafico da FRF de um grau de liberdade em X do né central da extremidade livre usando
a Malha 1

|—_Ellr\nm6n9'\l' H
~a st propaccional §

‘ J Incotporag Se do o

Deslocamento (m}

Freguéncra (Hz)

O solo amortece a vibragdo, comprovados com os dados das Tabelas 2,3 e graficamente pela
Figura 3, fazendo com que a frequéncia natural diminua, e diminuindo a amplitude do deslocamento, o
objetivo ¢ evitar trabalhar com uma estrutura excitada na frequéncia igual a frequéncia natural quando
esta acoplada com o solo.

4. Conclusao

O desenvolvimento do cddigo em MATLAB® para analisar o acoplamento do solo em estruturas
tetraédricas tridimensionais, utilizando o método dos elementos finitos, foi realizado. Foi possivel
calcular as frequéncias naturais da estrutura engastada a uma superficie fixa e sua comparagdo com o
solo, uma superficie elastica. Para a validagdo do modelo, foi realizada uma comparagéo em relagdo as
frequéncias naturais de uma estrutura engastada em uma extremidade e carregada dinamicamente na
superficie livre, com um modelo analitico, discretizando em trés malhas diferentes. Como esperado,
quanto maior a discretizagdo, mais proximo o modelo ficou do caso analitico.

O grande objetivo foi conhecer o comportamento da estrutura quando acoplada ao solo. Os
resultados indicaram que o solo atua como um amortecedor dindmico, atuando sobre a estrutura
diminuindo sua amplitude de deslocamento e reduzindo as frequéncias naturais.




Daniel Vasconcelos Rodrigues Alves- Implementagio de um cédigo computacional com elementos tridimensionais para andlise da

interagéo dinamica solo-estrutura
7

5. Referéncias

CARRION R. Uma Implementagio do Método dos Elementos de Contorno para Problemas
Estaciondrios Tridimensionais em Dominios Abertos e Fechados. Tese de Doutorado,
FEM/UNICAMP., 2002.

CHAKRABARTI, W. K. Hydrodynamics of Offshore Structures; Springer-Verlag Publishers,
1987.

KIM, N. H., SANKAR, B. V. Introdugiio a2 Anilise e ao Projeto em Elementos Finitos - LTC
Editora, 2011.

RAO S. Vibracoes Mecinicas — Editora Pearson Prentice Hall, 2008.

VAZ, LUIZ ELOY. Método Dos Elementos Finitos em Andlise de Estruturas - Editora
Elsevier, 2011




